

UL File No.: E43028 CSA File No.: LR26550

mm inch

- Sealed to meet the combination process of automatic wave soldering and cleaning needs
- Latching types available
- High switching capacity and high sensitivity in subminiature size

150 mW pick-up, 8 A inrush capacity: 51 A for 1a1b
35 A for 2a

- High shock and vibration resistance Shock: 20 G
Vibration: $\mathbf{1 0}$ to $\mathbf{5 5 ~ H z}$ at double amplitude of $\mathbf{2 ~ m m}$

SPECIFICATIONS

Contacts

Arrangement			1 Form A 1 Form B		2 Form A
Contact material			Gold flash over silver alloy		
Initial contact resistance, max.			$30 \mathrm{~m} \Omega$		
Rating (resistive)	Max. switching power		2,000 VA, 150 W		
	Max. switching voltage		380 V AC		
	Max. switching current		8 A		
HP rating			1/4 HP 125, 250 V AC		
Inrush current capability			51 A (TV-3 equivalence) for 1 a 1 b 35 A (TV-1 equivalence) for 2 a		
Expected life (min. operations)	Mechanical (at 180 cpm)		10^{7}		
	Electrical	8 A $250 \mathrm{~V} \mathrm{AC} \mathrm{(resistive)}$	10^{5}		
		$5 \mathrm{~A} 30 \mathrm{~V} \mathrm{DC} \mathrm{(resistive)}$	2×10^{5}		
		3.5 A 250 V AC (inductive $\cos \varphi \fallingdotseq 0.4$)	1.5×10^{5}		
		3 A 100 V AC (lamp)	3×10^{4}		-
		1 A 100 V AC (lamp)	-		3×10^{4}

Coil (polarized) (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Single side stable	Minimum operating power	Approx. 150 mW
	Nominal operating power	Approx. 240 mW
Latching	Minimum set and reset power	Approx. 150 mW
	Nominal set and reset power	Approx. 240 mW

Remarks

*1 Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{* 3}$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
${ }^{* 4}$ Excluding contact bounce time
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 6}$ Half-wave pulse of sine wave: 6 ms

Characteristics (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F} 50 \%$ Relative humidity)

| Max. operating speed (at rated load) | |
| :--- | :---: |\quad| 30 cps. | |
| :---: | :---: |
| Initial insulation resistance | |

${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 5 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (Page 49)

TYPICAL APPLICATIONS

Sequence controllers, facsimiles, telephone controls, remote control security devices and security equipment.
ORDERING INFORMATION

(Note) Standard packing: Carton; 50 pcs., Case; 500 pcs.

TYPES AND COIL DATA at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$
Single side stable

Part No.		Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Maximum allowable voltage, V DC $\left(60^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Coil } \\ & \text { resistance, } \\ & \Omega \\ & (\pm 10 \%) \end{aligned}$	Nominal operating current, mA
1 Form A 1 Form B	2 Form A						
ST1-DC3V	ST2-DC3V	3	2.4	0.3	4.5	38	75
ST1-DC5V	ST2-DC5V	5	4.0	0.5	7.5	105	47
ST1-DC6V	ST2-DC6V	6	4.8	0.6	9.0	150	40
ST1-DC9V	ST2-DC9V	9	7.2	0.9	13.5	360	25
ST1-DC12V	ST2-DC12V	12	9.6	1.2	18.0	600	20
ST1-DC24V	ST2-DC24V	24	19.2	2.4	36.0	2,400	10
ST1-DC48V	ST2-DC48V	48	38.4	4.8	72.0	9,000	4.7

2 coil latching

Part No.		Nominal voltage, V DC	Set and reset voltage, V DC (max.)	Maximum allowable voltage,$\text { V DC }\left(60^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Coil } \\ \text { resistance, } \\ \Omega \\ (\pm 10 \%) \\ \hline \end{gathered}$	Nominal operating current, mA
1 Form A 1 Form B	2 Form A					
ST1-L2-DC3V	ST2-L2-DC3V	3	2.4	4.5	40	75
ST1-L2-DC5V	ST2-L2-DC5V	5	4.0	7.5	110	47
ST1-L2-DC6V	ST2-L2-DC6V	6	4.8	9.0	155	37.5
ST1-L2-DC9V	ST2-L2-DC9V	9	7.2	13.5	360	25
ST1-L2-DC12V	ST2-L2-DC12V	12	9.6	18.0	640	18.8
ST1-L2-DC24V	ST2-L2-DC24V	24	19.2	36.0	2,400	9.8
ST1-L2-DC48V	ST2-L2-DC48V	48	38.4	72.0	10,200	4.7

DIMENSIONS

Schematic (Bottom view)
Single side stable

General tolerance: $\pm 0.2 \pm .008$

Tolerance: $\pm 0.1 \pm .004$

2 coil latching

Diagram shows the "reset" position when terminals 3 and 4 are energized. Energize terminals 1 and 2 to transfer contacts.

Diagram shows the "reset" position when terminals 3 and 4 are energized. Energize terminals 1 and 2 to transfer contacts.

REFERENCE DATA

1. Max. switching power

2. Coil temperature rise Sample: ST1-DC24V

3. Influence of adjacent mounting

Sample: ST1-DC24V
5. Max. ambient temperature by operating power

6. Contact reliability

ST relay socket

Solder terminal socket PC board terminal socket

Specifications

Breakdown voltage	4,000 Vrms Coil/Contacts $2,000 \mathrm{Vrms}$ Contacts/Contacts
Insulation resistance	More than $1,000 \mathrm{M} \Omega$ between terminals
Heat resistance	$150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ for 1 hr
Max. continuous current	10 A
Relay insertion life	15 times

DIMENSIONS
ST-PS

Precautions for use (socket)

1. PC board mounting method

PC board pattern

The terminal configuration is symmetrical on the left and right, so an arrow mark g is stamped on the socket to prevent mis-insertion. We recommend printing the same arrow mark g on the component mounting side (side opposite from pattern) of the PC board. In this case, the terminal configuration becomes the terminal nos. noted near the drilling holes.
2. Chassis cutout

Chassis cutting dimensions

If the chassis hole is punched with a press, set so the release R on the front side (A side).
The range for chassis thickness is 0.6 to 2.2 mm . 024 to .087 inch.
3. Relay mounting and removal
(1) Align the directions of the relay and socket.

(2) Insert the relay all the way in, so it is securely in place.

(3) Press the part indicated by A in the B direction, and fasten by placing the hook on the relay.

(4). When removing the relay, completely release the hooks on both sides and pull the relay out.

